Consider an isolated system. Let its Hamiltonian (or energy) be

\[\mathcal{H} = \mathcal{H}_1 + \mathcal{H}_2 + \mathcal{H}_3 \]

Transition Probabilities and Master Equation

When the system is in state \(\{1, 2\} \) of the transition probability is

\[P_{ij}(t) = \frac{1}{2} \left(e^{-t} + e^{-2t} \right) \]

This follows from the fact that the quantum mechanics

\[M \neq 0 \quad \text{if} \quad F \neq 0 \]

Irreversible processes

From the rate of change of the transition probability to the

\[P_{ij}(t) = \frac{1}{2} \left(e^{-t} + e^{-2t} \right) \]

This is the master equation of the quantum mechanics.
Section 12.2.1

The system is in contact with a heat reservoir.

The system under consideration is a perfect gas in a closed system interacting with a heat reservoir.

The second law of thermodynamics states that the system's entropy increases over time. This implies that the system's state will evolve towards a more probable state through natural processes.

The rate of entropy production in a thermodynamic process is given by the equation:

\[\dot{S} = \sum_i \dot{Q}_i / T_i \]

where \(\dot{Q}_i \) is the heat exchanged with the environment and \(T_i \) is the temperature of the environment.

By the first law of thermodynamics, the change in internal energy of the system is equal to the heat exchanged with the environment:

\[\Delta U = \int \dot{Q} \, dt \]

where \(\Delta U \) is the change in internal energy and \(\dot{Q} \) is the rate of heat exchange.

The total entropy change of the system and its surroundings is given by:

\[\Delta S = \Delta S_{\text{sys}} + \Delta S_{\text{env}} \]

where \(\Delta S_{\text{sys}} \) is the entropy change of the system and \(\Delta S_{\text{env}} \) is the entropy change of the environment.

The entropy change of the environment is given by the equation:

\[\Delta S_{\text{env}} = \sum_i \dot{Q}_i / T_i \]

where \(\dot{Q}_i \) is the heat exchanged with the environment and \(T_i \) is the temperature of the environment.

The entropy change of the system is:

\[\Delta S_{\text{sys}} = \int \frac{\dot{W}}{T} \, dt \]

where \(\dot{W} \) is the work done by the system and \(T \) is the temperature of the system.

The entropy change of the system is also equal to the heat exchanged with the environment divided by the temperature of the environment:

\[\Delta S_{\text{sys}} = \int \frac{\dot{Q}}{T} \, dt \]

Since the total entropy change is non-negative, it follows that:

\[\Delta S_{\text{sys}} + \Delta S_{\text{env}} \geq 0 \]

Therefore, the system will always tend towards a state of maximum entropy. This is known as the second law of thermodynamics.

In summary, the second law of thermodynamics states that the total entropy of a closed system and its surroundings will always increase over time. This implies that the system's state will evolve towards a more probable state through natural processes.

Although the precise details of the entropy change are difficult to calculate, the general trend is clear. The system's entropy will increase over time, and this will lead to a gradual evolution towards a state of maximum entropy.
15.3 Magnetic Resonance

For all p, as it should.

The page text is a continuation of a mathematical discussion, with various equations and diagrams illustrating concepts related to magnetic resonance. The text is dense and technical, involving terms such as spin, N, and H^\pm. The diagrams likely represent magnetic field configurations or transitions.

The section is part of a larger technical document, possibly in the field of physics or engineering, focusing on the theoretical and practical aspects of magnetic resonance, which is crucial in fields like nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI).
Suppose now that the interaction of the spins with the lattice is very weak, so that the lattice heat reservoir represents the thermal excitation of the spins with the large time 1. (1.3.4.1)

If we make the Hamiltonian interaction with a constant-field term, the constraint equations for the initial time of 0, then (1.3.4.11)

\[n = \frac{1}{2} \left(u - (0) + n \right) + (0) = (u) \]

In the absence of a field with \(n = 0 \), the explicit expression is (1.3.4.10)

\[2n - \left(u - (0) - u \right) + \frac{iN}{up} = \frac{1}{2} \]

Hence (1.3.4.8) can be written in the form (1.3.4.9)

\[\frac{1}{2} \left(H^{\alpha} + 1 \right) N^2 \approx \frac{1}{2} N \approx \frac{1}{2} H^{\alpha} \]

so that \(n = \frac{1}{2} \) as usual. Assume the value of \(n = \frac{1}{2} \). The expression follows from the canonical distribution (1.3.4.9).

This is, of course, the result which follows from the canonical distribution (1.3.4.9).

\[H^{\alpha} N = \frac{1}{2} \]

By expanding the exponential, the relation (1.3.4.10) can be rewritten in the form (1.3.4.11)

\[\frac{1}{2} \left(H^{\alpha} + 1 \right) N + \frac{1}{2} N \approx \frac{1}{2} H^{\alpha} \]

According to which one has in equilibrium. The following follows from the canonical distribution (1.3.4.12).

\[N H^{\alpha} = \frac{1}{2} \]

where (1.3.4.8) holds. The expression is (1.3.4.10).

Since one has \(n = \frac{1}{2} \), the relation (1.3.4.9) becomes (1.3.4.10)

\[\frac{1}{2} \left(H^{\alpha} + 1 \right) N + \frac{1}{2} N \approx \frac{1}{2} H^{\alpha} \]

Introducing the population difference

\[(n + -M)^{-2} + \left(n + -M \right)^{+2} - \left(n + -M \right)^{2} = \left(n + -M \right) \frac{1}{2} \]

By substituting the second equation from the first one obtains

\[\left(n + -M \right)^{-2} + \left(n + -M \right)^{+2} = \left(n + -M \right) \frac{1}{2} \]

Here it is only appreciable if the resonance condition

The total Hamiltonian of the system can be written as

\[H^{\alpha} = e^{2} + e^{2} + e^{2} + e^{2} \]
The degree of polarization of the nuclear electrons can be measured by the

\[
\nu = \frac{n^+ - n^-}{n^+ + n^-}
\]

(12.3.1.2)

where \(n^+\) and \(n^-\) are the populations of the nuclear electrons.

The equation for the electrons of energy \(\nu\) is

\[
\left(n^+ - n^- \right) \left(n^+ + n^- \right) = \frac{1}{2} u + \frac{1}{2} u = \frac{u}{2}
\]

(12.3.1.3)

The results are consistent with the expected results.

The polarization effect is significant when the interaction is strong, with the

\[
\frac{M}{\eta} + I = u
\]

(12.3.1.4)

where \(M\) is the magnetic moment and \(I\) is the spin quantum number.

When the field is strong, the interaction is significant, with the

\[
\frac{n^+ - n^-}{n^+ + n^-} = \frac{u}{2}
\]

(12.3.1.2)

This results in a significant polarization effect.

The polarization effect is significant when the interaction is strong, with the

\[
\frac{M}{\eta} + I = u
\]

(12.3.1.4)

where \(M\) is the magnetic moment and \(I\) is the spin quantum number.

When the field is strong, the interaction is significant, with the

\[
\frac{n^+ - n^-}{n^+ + n^-} = \frac{u}{2}
\]

(12.3.1.2)

This results in a significant polarization effect.